图片 1

图片 1

锂离子电池(Lithium Ion Battery,简称LIB)
是继镍镉电池、镍氢电池之后的第三代小型蓄电池。作为一种新型的化学电源,它具有工作电压高、比能量大、放电电位曲线平稳、自放电小、循环寿命长、低温性能好、无记忆、无污染等突出的优点,能够满足人们对便携式电器所需要的电池小型轻量化和有利于环保的双重要求,广泛用于移动通讯、笔记本电脑、摄放一体机等小型电子装置,也是未来电动交通工具使用的理想电源。
锂离子电池自1992年由日本Sony公司商业化开始便迅速发展。2000年以前世界上的锂离子电池产业基本由日本独霸。近年来,随着中国和韩国的崛起,日本一枝独秀的局面被打破。2003年全球生产锂离子电池12.5亿只,其中中国生产4.5亿只,国内电池公司产量大于2.8亿只,占全球锂离子电池总产量的20%以上。近几年我国锂离子电池产量平均以每年翻一番的的速度高速增长,专家预测,未来几年,随着一批骨干企业生产规模的不断扩大,收集和笔记本电脑、摄像机、数码相机等便携产品的持续增长,我国锂离子电池产业仍将保持年平均30%以上的增长速度,2004年国内小型锂离子电池可达日产200~300万只,全年产量超过6亿只。
锂离子电池能否成功应用,关键在于能可逆地嵌入脱嵌锂离子的负极材料的制备。这类材料要求具有:
①在锂离子的嵌入反应中自由能变化小;
②锂离子在负极的固态结构中有高的扩散率; ③高度可逆的嵌入反应;
④有良好的电导率; ⑤热力学上稳定同时与电解质不发生反应。目前,
研究工作主要集中在碳材料和其它具有特殊结构的化合物。 1. 碳负极材料
碳负极锂离子电池在安全和循环寿命方面显示出较好的性能,并且碳材料价廉、无毒,目前商品锂离子电池广泛采用碳负极材料。
众所周知,碳材料种类繁多,目前研究得较多且较为成功的碳负极材料有石墨、乙炔黑、微珠碳、石油焦、碳纤维、裂解聚合物和裂解碳等.在众多的用作碳负极的材料中,天然石墨具有低的嵌入电位,优良的嵌入-脱嵌性能,是良好的锂离子电池负极材料。通常锂在碳材料中形成的化合物的理论表达式为LiC6,按化学计量的理论比容量为372mAh/g。近年来随着对碳材料研究工作的不断深入,已经发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,锂在其中的嵌入-脱嵌不但可以按化学计量LiC6进行,而且还可以有非化学计量嵌入-脱嵌,其比容量大大增加,由LiC6的理论值372mAh/g提高到700mAh/g~1000mAh/g,因此而使锂离子电池的比能量大大增加。所以近年来锂离子电池的研究工作重点在碳负极材料的研究上,且已经取得了许多新的进展。Okuno等[8]研究了用中介相沥青焦炭(mesophase
pitch
carbon,MPC)修饰的焦炭电极,发现焦炭电极的比容量仅170mAh/g~250mAh/g,焦炭和MPC按4∶1的比例混合,比容量为277mAh/g,而用MPC修饰的焦炭电极其比容量为300mAh/g~310mAh/g。马树华等[9]在中介相微球石墨电极上人工沉积一层Li2CO3或LiOH膜,电极的容量及首次充放电效率均有一定的改善。
邓正华等采用热离子体裂解天然气制备的天然气焦炭具有较好的嵌Li能力,初次放电容量为402mAh/g,充电量为235mAh/g,充放电效率为58.5%。冯熙康等[11]将石油焦在还原气氛中经2600℃处理后制得的人造石墨外部包覆碳层,发现处理后的这种材料有较高的比容量,较好的充放电性能,较低的自放电率。
三洋公司采用优质天然石墨作负极,石墨在高温下与适量的水蒸气作用,使其表面无定形化,这样Li+较容易嵌入石墨晶格中,从而提高其嵌Li的能力。
碳负极的嵌Li能力对不同的材料有所不同,主要是受其结构的影响。如Sony公司使用聚糠醇的化合物,三洋公司使用天然石墨,松下公司采用中介相沥青基碳微球。一般说来,无定形碳具有较大的层间距和较小的层平面,如石墨为0.335nm,焦炭为0.34nm~0.35nm,有的硬碳高达0.38nm,Li+在其中的扩散速度较快,能使电池更快地充放电。Dohn描述了石墨层间距d002与比容量的关系,表明随d002的增大,放电比容量增高。Takami研究了中介相沥青基纤维在不同温度下的层间距和扩散系数,认为层间距取决于碳的石墨化程度,石墨化程度增加可降低Li+扩散的活化能,并有利于Li+的扩散。
高比容量的碳负极材料,可以极大地提高锂离子电池的比能量,但是部分裂解的碳化物有一个明显的缺陷就是电压滞后,即充电时Li+在0V(vs.
Li+/Li)左右嵌入,而放电时在1V(vs.
Li+/Li)脱嵌,尽管此类电池充电电压有4V,但实际上只有3V的工作电压。Takami等认为酚醛树脂、聚苯胺、微珠碳等明显有电压滞后现象。此外,这类材料的制备工序复杂,成本较高。
天然鳞片石墨用作锂离子电池负极材料的不足之处在于石墨层间以较弱的分子间作用力即范德华力结合,充电时,随着溶剂化锂离子的嵌入,层与层之间会产生剥离(exfoliation)并形成新的表面,有机电解液在新形成的表面上不断还原分解形成新的SEI膜,既消耗了大量锂离子,加大了首次不可逆容量损失,同时由于溶剂化锂离子的嵌入和脱出会引起石墨颗粒的体积膨胀和收缩,致使颗粒间的通电网络部分中断,因此循环寿命很差。
对鳞片石墨进行修饰,可以大大提高它的可逆容量和循环寿命.Kuribayashi等采用酚醛树脂包覆石墨,在700~1200℃惰性气氛下热分解酚醛树脂,形成以石墨为核心、酚醛树脂热解碳为包覆层的低温热解碳包覆石墨。包覆层在很大程度上改善了石墨材料的界面性质。低温热解碳包覆的石墨不仅具有低电位充、放电平台;同时借助于与电解液相容性好的低温热解碳阻止了溶剂分子与锂离子的共嵌入,防止了核心石墨材料在插锂过程中的层离,减少了首次充、放电过程中的不可逆容量损失并延长了电极的循环寿命。此外,对碳材料的改性方法还有表面氧化、机械研磨和掺杂等,可以有效提高电极的电化学性能。
2.非碳负极材料
近年来对LIB非碳类负极材料的研究也非常广泛。根据其组成通常可分为:锂过渡金属氮化物、过渡金属氧化物和纳米合金材料。锂过渡金属氮化物具有很好的离子导电性、电子导电性和化学稳定性,用作锂离子电池负极材料,其放电电压通常在1.0V以上。电极的放电比容量、循环性能和充、放电曲线的平稳性因材料的种类不同而存在很大差异。如Li3FeN2用作LIB负极时,放电容量为150mAh/g、放电电位在1.3V(vs
Li/Li+)附近,充、放电曲线非常平坦,无放电滞后,但容量有明显衰减。Li3-xCoxN具有900mAh/g的高放电容量,放电电位在1.0V左右,但充、放电曲线不太平稳,有明显的电位滞后和容量衰减。目前来看,这类材料要达到实际应用,还需要进一步深入研究。SnO/SnO2用作LIB负极具有比容量高、放电电位比较低(在0.4~0.6V
vs
Li/Li+附近)的优点。但其首次不可逆容量损失大、容量衰减较快,放电电位曲线不太平稳。SnO/SnO2因制备方法不同电化学性能有很大不同。如低压化学气相沉积法制备的SnO2可逆容量为500mAh/g以上,而且循环寿命比较理想,100次循环以后也没有衰减。在SnO中引入一些非金属、金属氧化物,如B、Al、Ge、Ti、Mn、Fe等并进行热处理,可以得到无定型的复合氧化物称为非晶态锡基复合氧化物(Amorphous
Tin-based Composite Oxide
简称为ATCO)。与锡的氧化物相比锡基复合氧化物的循环寿命有了很大的提高,但仍然很难达到产业化标准。
纳米负极材料主要是希望利用材料的纳米特性,减少充放电过程中体积膨胀和收缩对结构的影响,从而改进循环性能。实际应用表明:纳米特性的有效利用可改进这些负极材料的循环性能,然而离实际应用还有一段距离。关键原因是纳米粒子随循环的进行而逐渐发生结合,从而又失去了纳米粒子特有的性能,导致结构被破坏,可逆容量发生衰减。此外,纳米材料的高成本也成为限制其应用的一大障碍。
某些金属如Sn、Si、Al等金属嵌入锂时,将会形成含锂量很高的锂-金属合金。如Sn的理论容量为990mAh/cm3,接近石墨的理论体积比容量的10倍。合金负极材料的主要问题首次效率较低及循环稳定性问题,必须解决负极材料在反复充放电过程中的体积效应造成电极结构破坏。单纯的金属材料负极循环性能很差,安全性也不好。采用合金负极与其他柔性材料复合有望解决这些问题。
总之,非碳负极材料具有很高的体积能量密度,越来越引起引起科研工作者兴趣,但是也存在着循环稳定性差,不可逆容量较大,以及材料制备成本较高等缺点,至今未能实现产业化。负极材料的发展趋势是以提高容量和循环稳定性为目标,通过各种方法将碳材料与各种高容量非碳负极材料复合以研究开发新型可适用的高容量、非碳复合负极材料。
3.产业化现状
在锂离子电池负极材料中,石墨类碳负极材料以其来源广泛,价格便宜,一直是负极材料的主要类型。除石墨化中间相碳微球、低端人造石墨占据小部分市场份额外,改性天然石墨正在取得越来越多的市场占有率。我国拥有丰富的天然石墨矿产资源,在以天然石墨为原料的锂离子负极材料的产业化方面,深圳贝特瑞电池材料有限公司以高新科技促进传统产业的发展,运用独特的整形分级、机械改性和热化学提纯技术,将普通鳞片石墨加工成球形石墨,将纯度提高到99.95%以上,最高可以达到99.9995%。并通过机械融合、化学改性等先进的表面改性技术研制、生产出具有国际领先水平的高端负极材料产品,其首次放电容量达360mAh/g以上,首次效率大于95%,压实比达1.7g/cm3,循环寿命500次容量保持在88%以上。产品出口至日本、韩国、美国、加拿大、丹麦、印度等国家,并在国内40余家锂电厂家应用。该公司年产1800吨天然复合石墨(MSG、AMG、
616、717、818等)、1200吨人造石墨负极材料(SAG系列、NAG系列、316系列、317系列)、3000吨球形石墨、5000吨天然微粉石墨和600吨锰酸锂正极材料,并正在不断扩大生产规模,同时可以根据客户的需求、工艺、设备以及存在的问题为客户开发客户需要的产品。生产的产品品质稳定、均一,具有很好的电化学性能和卓越加工性能,可调产品的比表面积、振实密度、压实密度、不纯物含量和粒度分布等。主要生产设备和检测仪器均从国外进口,从而形成该公司独特的核心竞争力的一部分。在锂离子电池负极材料行业贝特瑞已经引领了该行业的发展方向。
在锂离子电池负极材料领域,该公司的锂离子电池负极材料的已站在新一代国产化材料应用的前沿,代表着石墨深加工的方向。为确保产品持续领先,不断进行技术创新、产品创新、制度创新、思维理念创新,持续进行新产品开发,新近又推出了超高容量的合金负极材料(可逆容量>450mAh/g)、复合石墨PW系列、BF系列、纳米导电材料、锂离子动力电池用多元复合负极材料等产品。据来自全球电池强国??日本的权威信息表明:深圳市贝特瑞电子材料有限公司研发生产的锂电池负极材料目前处于国内第一,世界第四的地位。

目前,锂离子电池所采用的负极材料一般都是碳素材料,如石墨、软碳、硬碳等。正在探索的负极材料有氮化物、PAS、锡基氧化物、锡基氧化物、锡合金,以及纳米负极材料等。作为锂离子电池负极材料要求具有以下性能:

由于锂离子电池技术的进步放缓,越来越多公司正在研究提升能量密度的新型替代材料,从而解决电动汽车的行驶里程焦虑问题。

锂离子在负极基体中的插入氧化还原电位尽可能低,接近金属锂的电位,从而使电池的输出电压高;

外媒报道称,由特斯拉前工程师Gene Berdichevsky和Alex
Jacobs创立的一家初创公司Sila
Nano开发了一种硅基负极,用于取代锂离子电池中的石墨材料。

在基体中大量的锂能够发生可逆插入和脱插以得到高容量密度,即可逆的x值尽可能大;

该公司称,硅基负极可以将电池的能量密度提高20%。而Berdichevsky在一次采访中更是乐观地认为,使用其具有柔韧性的硅树脂负极可以使电池的能量密度提高40%,从而支撑电动汽车一次充电可行驶620英里。

在插入/脱插过程中,锂的插入和脱插应可逆且主体结构没有或很少发生变化,这样尽可能大;

能量密度大幅提升可以使电动汽车获得更长的续航里程,同时有助于降低电池成本和整车重量,提升消费者的接受度。而这种新技术吸引了包括西门子、宝马、戴姆勒等众多投资者的关注。

氧化还原电位随x的变化应该尽可能少,这样电池的电压不会发生显着变化,可保持较平稳的充电和放电;

今年4月,戴姆勒股份公司份收购了美国电池材料专业公司Sila
Nanotechnologies的10%股份,跟投的企业还包括8VC、西门子等,共获得1.7亿美元的融资。Sila当前估值超过10亿美元。

插入化合物应有较好的电导率和离子电导率,这样可减少极化并能进行大电流充放电;

Sila
Nano成立于2011年,是新型电池材料的领先开发商,其材料性能优于现有的锂离子电池技术。Sila
Nano跨学科的科学家和工程师团队利用安全的、强大的、可大规模生产的硅,推动了下一代电池化学的发展。

主体材料具有良好的表面结构,能够与液体电解质形成良好的SEI膜;

锂离子电池石墨负极材料

插入化合物在整个电压范围内具有良好的化学稳定性,在形成SEI膜后不与电解质等发生反应;

锂离子电池能量密度在很大程度上取决于负极材料,从锂离子电池实现商业化到现在,所用的负极材料最成熟,应用最广的是碳材料,其中最主要的依然是石墨。石墨具有六元环碳网层状结构,碳碳之间是SP2
杂化的,层层之间是分子作用力连接。石墨中存在两种不同的晶体结构:六面体石墨(2H)和菱面体石墨(3R)。2H相具有ABABA特征堆积,3R相的堆积结构则是ABCABC。两种相可以相互转变,2H相是热力学稳定,在石墨中较多,约占总体的五分之四在锂离子电池负极材料中,天然石墨和人造石墨一直是使用最大的负极材料,但是人造石墨由于在生
产过程中需要高温处理,使其生产成本大幅提高并对环境产生不利影响,相对于人造石墨而言,天然石墨有很多优点,它的成本
低、结晶程度高,提纯、粉碎、分级技术成熟,充放电电压平台低,理论比容量高等,这些为其在锂离子电池行业的应用奠定了
良好的基础。

锂离子在主体材料中有较大的扩散系数,便于快速充放电;

天然石墨分无定形石墨(土状石墨或微晶石墨)和鳞片石墨两种。理论容量为372
mAh/g。无定形石墨纯度低,石墨晶面间距(d002)为0.336
nm。主要为2H晶面排序结构,即石墨层按ABAB…顺序排,单个微晶之间的取向呈现各项异性,但经过加工,微晶颗粒相互之间有一定的交互作用,形成块状或颗粒状的粒子时具有各向同性性质。且形成的块状颗粒容易粉碎成形状较好的颗粒。

从实用角度而言,主体材料应该便宜,对环境无污染。

在锂离子嵌入脱嵌过程中体积变化小,结构相对稳定,但是可逆比容量仅260
mAh/g,不可逆比容量在100 mAh/g
以上。鳞片石墨的结晶度高,片层结构单元化大,具有明显的各向异性。这种结构决定了石墨在锂嵌入和脱嵌过程中体积产生较大的变化,导致石墨层结构破坏,进而造成较大的不可逆容量损失和循环性能的剧烈恶化。

一、碳负极材料

作为锂离子电池负极石墨时,微晶石墨和鳞片石墨均有首次不可逆容量大的缺点,且鳞片石墨循环性能和大电流充放电性能差,因此,在使用时,研究者们往往侧重于对天然石墨进行改性研究,改善其自身结构缺点,提升电池的性能。其中,对石墨负极改性主要有表面处理、表面包覆以及元素掺杂等手段,下面将对其改性研究详细阐述。

碳负极锂离子电池在安全和循环寿命方面显示出较好的性能,并且碳材料价廉、无毒,目前商品锂离子电池广泛采用碳负极材料。近年来随着对碳材料研究工作的不断深入,已经发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,锂在其中的嵌入-脱嵌不但可以按化学计量LiC6进行,而且还可以有非化学计量嵌入-脱嵌,其比容量大大增加,由LiC6的理论值372mAh/g提高到700mAh/g~1000mAh/g,因此而使锂离子电池的比能量大大增加。

石墨负极材料的改性研究

目前,已研究开发的锂离子电池负极材料主要有:石墨、石油焦、碳纤维、热解炭、中间相沥青基炭微球、炭黑、玻璃炭等,其中石墨和石油焦最有应用价值。

1.表面氧化

石墨类碳材料的插锂特性是:插锂电位低且平坦,可为锂离子电池提供高的、平稳的工作电压。大部分插锂容量分布在0.00~0.20V之间(vs.
Li+/Li);插锂容量高,LiC6的理论容量为372mAh.g-1;与有机溶剂相容能力差,易发生溶剂共插入,降低插锂性能。

表面氧化主要是在不规整电极界面(锯齿位和摇椅位)处生产酸性基团(如-OH,-COOH
等),嵌锂前这些基团可以阻止溶剂分子的共嵌入并提高电极/电解液间的润湿性,减少界面阻抗,首次嵌锂时转变为羧酸锂盐和表面-Oli基团,形成稳定的SEI膜。此外,氧化可以出去石墨中的一些缺陷结构,产生的纳米级微孔做外额外的储锂空间,提高储锂容量。

石油焦类碳材料的插、脱锂的特性是:起始插锂过程没有明显的电位平台出现;插层化合物LixC6的组成中,x=0.5左右,插锂容量与热处理温度和表面状态有关;与溶剂相容性、循环性能好。

表面氧化通常包括气相氧化和液相氧化两种。气相氧化主要是以空气,O2,O3,CO2,C2H2等气体为氧化剂,与石墨进行气固界面反应,减少石墨表面的活性点,降低首次不可逆容量损失,同时,生成更多的微孔和纳米孔道,增加锂离子的存贮空间,有利于提高可逆容量,改善负极性能。吴宇平等将普通的天然石墨在500
℃下用空气做氧化剂来进行氧化改性。改性后石墨结构的稳定性得以提高,在去缺陷结构的同时增加了纳米级微孔及通道数目。另外,氧化时形成的氧化层与石墨结合紧密,形成致密的钝化膜,防止了电解液对石墨的溶剂化反应,提高了石墨的可逆容量。液相氧化法是利用硫酸铈、硫酸、硝酸、过氧化氢等强氧化剂溶液,通过液相-固相反应来实现。尹鸽平等利用硫酸和过硫酸铵饱和溶液对天然石墨进行表面氧化,将石墨的可逆容量提高至349
mAhg-1,首次库仑效率有一定提高。

根据石墨化程度,一般碳负极材料分成石墨、软碳、硬碳。

2.表面包覆

1、石墨

石墨负极材料的表面包覆改性主要包括碳包覆、金属或非金属及其氧化物包覆和聚合物包覆等。通过表面包覆实现提高电极的可逆比容量、首次库伦效率、改善循环性能和大电流充放电性能的目的。石墨材料表面包覆改性的出发点主要有以下两点:

石墨材料导电性好,结晶度较高具有良好的层状结构,适合锂的嵌入-脱嵌,形成锂-石墨层间化合物,充放电容量可达300mAh.g-1以上,充放电效率在90%以上,不可逆容量低于50mAh.g-1。锂在石墨中脱嵌反应在0~0.25V左右,具有良好的充放电平台,可与提供锂源的正极材料钴酸锂、锰酸锂、镍酸锂等匹配,组成的电池平均输出电压高,是目前锂离子电池应用最多的负极材料。

通过表面包覆,减小石墨的比表面积,减小形成SEI膜消耗掉的锂,进而提高材料的首次库仑效率;

石墨包括人工石墨和天然石墨两大类。

通过表面包覆,减少石墨表面的活性点,使表面性质均一,避免溶剂的共嵌入,减少不可逆损失。

人工石墨

3.无定形碳包覆

人工石墨是将易石墨化炭在N2气氛中于1900~2800℃经高温石墨化处理制得。常见人工石墨有中间相碳微球和石墨纤维。

在石墨外包覆一层无定形碳制成“核-壳”结构的C/C复合材料,使无定形碳与溶剂接触,避免溶剂与石墨的直接接触,阻止因溶剂分子的共嵌入导致的石墨层状剥离现象,扩大了电解液的选择范围,王国平等人将天然鳞片石墨制成球形石墨,在其表面包覆一层纳米非石墨化碳材料制成具有核-壳结构的改性球形石墨,改性后的球形石墨振实密度明显提升,且可逆容量提升至365
mAh·g-1,同时,首次库仑效率和循环稳定性也得到显著地提升。

MCMB是高度有序的层面堆积结构,可由煤焦油或石油渣油制得。在700℃以下热解炭化处理时,锂的嵌入容量可达600mAh.g-1以上,但不可逆容量较高。在1000℃以上热处理时,MCMB石墨化程度提高,可逆容量增大。通常石墨化温度控制在2800℃以上,可逆容量可达300mAh.g-1,不可逆容量小于10%。

锂离子电池以其高容量、高电压、高循环稳定性、高能量密度、无环境污染等优异的性能倍受青睐,被称为21世纪的绿色能源和主导电源,具有广泛的民用和国防应用前景,其应用领域不断扩大,不仅已经广泛而成功地应用于各种便携式电子产品,已经开始向动力电池方向发展。目前锂离子电池及其关键材料已成为各国关注的一个科技和产业焦点,也是我国能源领域重点扶持的高新技术产业。锂离子电池实现商业化到现在,所用的负极材料最成熟,应用最广的是碳材料,其中最主要的依然是石墨。天然石墨有着成本低、结晶程度高,提纯、粉碎、分级技术成熟,充放电电压平台低,理论比容量高等基础优势。然而天然石墨的结构缺陷导致首次效率低,循环差。所以开发改性天然石墨方法,势在必行。

气相沉积石墨纤维是一种管状中空结构,具有320mAh.g-1以上的放电比容量和93%的首次充放电效率,可大电流放电,循环寿命长,但制备工艺复杂,成本较高。

天然石墨

天然石墨是一种较好的负极材料,其理论容量为372Amh/g, 形成LiC6
的结构,可逆容量、充放电效率和工作电压都较高。石墨材料有明显的充、放电平台,且放电平台对锂电压很低,电池输出电压高。天然石墨有无定形石墨和磷片石墨两种。无定形石墨纯度低。可逆比容量仅260mAh.g-1,不可逆比容量在100mAh.g-1以上。磷片石墨可逆比容量仅300~350mAh.g-1,不可逆比容量低于50mAh.g-1以上。天然石墨由于结构完整,嵌锂位置多,所以容量较高,是非常理想的锂离子电池负极材料。其主要的缺点是对电解质敏感、大电流充放电性能差。在放电的过程中,在负极表面由于电解质或有机溶剂化学反应会形成一层固体电解质界面(Solid
Electrolyte Interface, SEI)膜,
另外锂离子插入和脱插的过程中,造成石墨片层体积膨胀和收缩,也容易造成石墨粉化,所以天然石墨的不可逆容量较高,循环寿命有待进一步提高。

改性石墨

通过石墨改性,如在石墨表面氧化、包覆聚合物热解炭,形成具有核-壳结构的复合石墨,可以改善石墨的充放电性能和循环性能。

通过石墨表面氧化,可以降低Li/LiC6电池的不可逆容量,提高电池的循环寿命,可逆容量可以达到446mAh.g-1(Li1.2C6),石墨材料的氧化剂可选择HNO3,O3,H2O2,NO+,NO2+等。石墨氟化可在高温下用氟蒸气与石墨直接反应,得到n和(C2F)n,也可以在Lewis酸存在时,于100℃进行氟化得到CxFn。碳材料经氧化或氟化处理后的容量都会有所提高。

石墨化碳纤维

气相生长碳纤维VGCF是以碳氢化合物为原料制备的负极材料,在2800℃处理的VGCF容量高,结构稳定。

中间相沥青碳纤维。3000℃处理的MCF,其中心肯有层状组织的辐射状晶体结构,与石焦油一样属乱层石墨结构,它具有高的比容量和库仑效率。

碳纤维的结构不同,嵌锂性能也不同,其中具有经向结构的碳纤维的充放电性能最好,同心结构的碳纤维易发生与溶剂分子共嵌入现象。因此,石墨化的沥青基碳纤维的性能优于天然鳞状石墨。

石墨在达到最大嵌锂限度时的体积只增加10%左右。因此,石墨在反复嵌入-脱出锂过程中能保持电极尺寸稳定,使碳电极有良好的循环性能。石墨也存在一些不足,如对电解液选择性强,只能在某些电解液中才有良好的电极性能;耐过充过放电性能差,Li+在石墨中扩散系数小,不利于快速充放电等。因此有必要对石墨改性,现已合成中间相碳微球、无定形碳、包覆石墨等,它们的充放电性能较石墨有显着的改善。

2、软碳

软碳即易石墨化碳,是指在2500℃以上的高温下能石墨化的无定形碳。软碳的结晶度低,晶粒尺寸小,晶面间距较大,与电解液的相容性好,但首次充放电的不可逆容量较高,输出电压较低,无明显的充放电平台电位。常见的软碳有石油焦、针状焦、碳纤维、碳微球等。

3、硬碳

硬碳是指难石墨化碳,是高分子聚合物的热解碳。这类碳在2500℃以上的高温也难以石墨化,常见的硬碳有树脂碳(酚醛树脂、环氧树脂、聚糠醇PFA-C等)、有机聚合物热解碳(PVA、PVC、PVDF、PAN等)、碳黑。

硬碳的偖锂容量很大(500~1000mAh.g-1),但它们也有明显的缺点,如首次充、放电效率低,无明显的充放电平台以及因含杂质原子H而引起的很大的电位滞后等。

二、非碳负极材料

1、氮化物

锂过渡金属氮化物具有很好的离子导电性、电子导电性和化学稳定性,用作锂离子电池负极材料,其放电电压通常在1.0V以上。电极的放电比容量、循环性能和充、放电曲线的平稳性因材料的种类不同而存在很大差异。如Li3FeN2用作LIB负极时,放电容量为150mAh/g、放电电位在1.3V(vs
Li/Li+)附近,充、放电曲线非常平坦,无放电滞后,但容量有明显衰减。Li3-xCoxN具有900mAh/g的高放电容量,放电电位在1.0V左右,但充、放电曲线不太平稳,有明显的电位滞后和容量衰减。目前来看,这类材料要达到实际应用,还需要进一步深入研究。

氮化物体系属反萤石或Li3N结构的化合物,具有良好的离子导电性,电极电位接近金属锂,可用作锂离子电极的负极。

反萤石结构的Li-M-N化合物如Li7MnN4和Li3FeN2可用陶瓷法合成。即将过渡金属氧化物和锂氮化物(MxNx+Li3N)在1%H2+99%N2气氛中直接反应,也可以通过Li3N与金属粉末反应。Li7MnN4和Li3FeN2都有良好的可逆性和高的比容量(分别为210和150mAh.g-1)。Li7MnN4在充放电过程中,过渡金属价态发生变化来保持电中性,该材料比容量比较低,约200mAh/g,但循环性能良好,充放电电压平坦,没有不可逆容量,特别是这种材料作为锂离子电池负极时,可以采用不能提供锂源的正极材料与其匹配用于电池。

Li3-xCoxN属于Li3N结构锂过渡金属氮化物(其通式为Li3-xMxN,M为Co、Ni、Cu),该材料比容量高,可达到900mAh/g,没有不可逆容量,充放电电压平均为0.6V左右,同时也能够与不能提供锂源的正极材料匹配组成电池,目前这种材料嵌锂、脱锂的机理及其充放电性能还有待进一步研究。

2、锡基负极材料

锡氧化物

锡的氧化物包括氧化亚锡、氧化锡和其混合物,都具有一定的可逆偖锂能力,偖锂能力比石墨材料高,可达500mAh/g以上,但首次不可逆容量也较大。SnO/SnO2用作负极具有比容量高、放电电位比较低(在0.4~0.6V
vs
Li/Li+附近)的优点。但其首次不可逆容量损失大、容量衰减较快,放电电位曲线不太平稳。SnO/SnO2因制备方法不同电化学性能有很大不同。如低压化学气相沉积法制备的SnO2可逆容量为500mAh/g以上,而且循环寿命比较理想,100次循环以后也没有衰减。而SnO以及采用溶胶-凝胶法经简单加热制备的SnO2的循环性能都不理想。

在SnO中引入一些非金属、金属氧化物,如B、Al、Ge、Ti、Mn、Fe等并进行热处理,可以得到无定型的复合氧化物称为非晶态锡基复合氧化物(Amorphous
Tin-based Composite Oxide 简称为ATCO),
其可逆容量可达600mAh/g以上,体积比容量大于2200mAh/cm3,是目前碳材料负极(500~1200mAh/cm3)的二倍以上,显示出应用前景。该材料目前的问题是首次不可逆容量较高,充放电循环性能也有待进一步改进。

锡复合氧化物

用于锂离子电池负极的锡基复合氧化物的制备方法是:将SnO,B2O3,P2O5按一定化学计量比混合,于1000℃下通氧烧结,快速冷凝形成非晶态化合物,其化合物的组成可表示为SnBxPyOz
(x=0.4~0.6,y=0.6~0.4,z=/2),
其中锡是Sn2+。与锡的氧化物相比锡基复合氧化物的循环寿命有了很大的提高,但仍然很难达到产业化标准。

锡合金

某些金属如Sn、Si、Al等金属嵌入锂时,将会形成含锂量很高的锂-金属合金。如Sn的理论容量为990mAh/cm3,接近石墨的理论体积比容量的10倍。为了降低电极的不可逆容量,又能保持负极结构的稳定,可以采用锡合金作锂离子电极负极,其组成为:25%Sn2Fe+75%SnFe3C。Sn2Fe为活性颗粒,它可以与金属锂形成合金,SnFe3C为非活性颗粒,它可在电极循环过程中保持电极的基本骨架。这种锡合金的体积比容量是石墨材料的两倍。用25%Sn2Fe+75%SnFe3C构成的电极可以获得1600mAh.g-1的可逆容量,表现出良好的循环性能。

合金负极材料的主要问题首次效率较低及循环稳定性问题,必须解决负极材料在反复充放电过程中的体积效应造成电极结构破坏。单纯的金属材料负极循环性能很差,安全性也不好。采用合金负极与其他柔性材料复合有望解决这些问题。

3、锂钛复合氧化物

用来作锂离子电池负极的锂钛复合氧化物主要是Li4Ti5O12,其制备方法主要有:高温固相合成法、溶胶-凝胶法等。

高温固相合成法

按一定计量的TiO2,LiCO3混匀研磨,在空气气氛下于1000℃保温26h冷至室温即得Li4Ti5O12。

将TiO2,
LiOH.H2O混匀研磨,在空气气氛下于700℃保温24h后冷却至室温得目标产品。

溶胶-凝胶法

LiOH 钛酸四丁酯 水 冰醋酸 无水乙醇

混合

溶胶

烘干

凝胶

热处理 产物

4、纳米碳管

纳米碳管是近年来发现的一种新型碳晶体材料,它是一种直径几纳米至几十纳米,长度为几十纳米至几十微米的中空管,其性能如下:

纳碳米管的电性能

比表面积/m2

首次充电容量

首次放电容量

不可逆容量

首次充电效率

170.4

1049

223.1

825.9

21.2

纳米管的制备有直流电弧法和催化热解法。

催化热法是将20%H2+80%CH4混合气体在Ni+Al2O3的催化剂颗粒上于500℃热解,将热解的样品研磨后,加入热硝酸(80,
℃)浸泡48h以除去碳管中的催化剂,用水反复洗涤过滤,直至洗涤液的PH=6,过滤后的样品于160℃烘干。

直流电弧法是以高纯石墨棒为电极,在氩气保护下,在密闭电弧炉中,通过打电弧,所得产物为含有C60系列产品的纳米碳管。通过化学氧化法可分离出纳米碳管。

纳米负极材料主要是希望利用材料的纳米特性,减少充放电过程中体积膨胀和收缩对结构的影响,从而改进循环性能。实际应用表明:纳米特性的有效利用可改进这些负极材料的循环性能,然而离实际应用还有一段距离。关键原因是纳米粒子随循环的进行而逐渐发生结合,从而又失去了纳米粒子特有的性能,导致结构被破坏,可逆容量发生衰减。此外,纳米材料的高成本也成为限制其应用的一大障碍。

总之,在锂离子电池负极材料中,石墨类碳负极材料以其来源广泛,价格便宜,一直是负极材料的主要类型。除石墨化中间相碳微球、低端人造石墨占据小部分市场份额外,改性天然石墨正在取得越来越多的市场占有率。非碳负极材料具有很高的体积能量密度,越来越引起引起科研工作者兴趣,但是也存在着循环稳定性差,不可逆容量较大,以及材料制备成本较高等缺点,至今未能实现产业化。负极材料的发展趋势是以提高容量和循环稳定性为目标,通过各种方法将碳材料与各种高容量非碳负极材料复合以研究开发新型可适用的高容量、非碳复合负极材料。

admin

相关文章

发表评论

电子邮件地址不会被公开。 必填项已用*标注